The Earliest Moment When Everyone Become Friends

In a social group, there are N people, with unique integer ids from 0 to N-1.

We have a list of logs, where each logs[i] = [timestamp, id_A, id_B] contains a non-negative integer timestamp, and the ids of two different people.

Each log represents the time in which two different people became friends.  Friendship is symmetric: if A is friends with B, then B is friends with A.

Let's say that person A is acquainted with person B if A is friends with B, or A is a friend of someone acquainted with B.

Return the earliest time for which every person became acquainted with every other person. Return -1 if there is no such earliest time.

 

Example 1:

Input: logs = [[20190101,0,1],[20190104,3,4],[20190107,2,3],[20190211,1,5],[20190224,2,4],[20190301,0,3],[20190312,1,2],[20190322,4,5]], N = 6
Output: 20190301
Explanation: 
The first event occurs at timestamp = 20190101 and after 0 and 1 become friends we have the following friendship groups [0,1], [2], [3], [4], [5].
The second event occurs at timestamp = 20190104 and after 3 and 4 become friends we have the following friendship groups [0,1], [2], [3,4], [5].
The third event occurs at timestamp = 20190107 and after 2 and 3 become friends we have the following friendship groups [0,1], [2,3,4], [5].
The fourth event occurs at timestamp = 20190211 and after 1 and 5 become friends we have the following friendship groups [0,1,5], [2,3,4].
The fifth event occurs at timestamp = 20190224 and as 2 and 4 are already friend anything happens.
The sixth event occurs at timestamp = 20190301 and after 0 and 3 become friends we have that all become friends.

 

Note:

  1. 2 <= N <= 100
  2. 1 <= logs.length <= 10^4
  3. 0 <= logs[i][0] <= 10^9
  4. 0 <= logs[i][1], logs[i][2] <= N - 1
  5. It's guaranteed that all timestamps in logs[i][0] are different.
  6. logs are not necessarily ordered by some criteria.
  7. logs[i][1] != logs[i][2]

Solution:

class Solution {
    static class UF {
        int[] parent;
        int[] size;
        int count;
        
        public UF(int n) {
            parent = new int[n];
            size = new int[n];
            for (int i = 0; i < n; i ++) {
                parent[i] = i;
                size[i] = 1;
            }
            count = n;
        }
        
        public void union(int x, int y) {
            int rootX = find(x);
            int rootY = find(y);
            if (rootX == rootY) return;
            if (size[rootX] >= size[rootY]) {
                parent[rootY] = rootX;
                size[rootX] += size[rootY];
            } else {
                parent[rootX] = rootY;
                size[rootY] += size[rootX];
            }
            count --;
        }        
        
        private int find(int x) {
            while (x != parent[x]) {
                parent[x] = parent[parent[x]];
                x = parent[x];
            }
            return x;
        }
    }
    
    public int earliestAcq(int[][] logs, int N) {
        Arrays.sort(logs, (a, b) -> a[0] - b[0]);
        UF group = new UF(N);
        for (int[] log : logs) {
            group.union(log[1], log[2]);
            if (group.count == 1) {
                return log[0];
            }
        }
        return -1;
    }
}